Skip to main content

Brain Basics: Understanding Sleep

Health

Brain Basics: Understanding Sleep

Anatomy of Sleep

Sleep Stages

Sleep mechanisms

How Much Sleep Do You Need?

Dreaming

The Role of Genes and Neurotransmitters

Tracking Sleep Through Smart Technology

Tips for Getting a Good Night's Sleep

Hope Through Research

Where can I get more information?


Introduction

Sleep is an important part of your daily routine—you spend about one-third of your time doing it.  Quality sleep – and getting enough of it at the right times -- is as essential to survival as food and water.  Without sleep you can’t form or maintain the pathways in your brain that let you learn and create new memories, and it’s harder to concentrate and respond quickly.

Sleep is important to a number of brain functions, including how nerve cells (neurons) communicate with each other.  In fact, your brain and body stay remarkably active while you sleep.  Recent findings suggest that sleep plays a housekeeping role that removes toxins in your brain that build up while you are awake. 

Everyone needs sleep, but its biological purpose remains a mystery.  Sleep affects almost every type of tissue and system in the body – from the brain, heart, and lungs to metabolism, immune function, mood, and disease resistance.  Research shows that a chronic lack of sleep, or getting poor quality sleep, increases the risk of disorders including high blood pressure, cardiovascular disease, diabetes, depression, and obesity.

Sleep is a complex and dynamic process that affects how you function in ways scientists are now beginning to understand.  This booklet describes how your need for sleep is regulated and what happens in the brain during sleep.

top

Anatomy of Sleep

Several structures within the brain are involved with sleep.

The hypothalamus, a peanut-sized structure deep inside the brain, contains groups of nerve cells that act as control centers affecting sleep and arousal.  Within the hypothalamus is the suprachiasmatic nucleus (SCN) – clusters of thousands of cells that receive information about light exposure directly from the eyes and control your behavioral rhythm.  Some people with damage to the SCN sleep erratically throughout the day because they are not able to match their circadian rhythms with the light-dark cycle.  Most blind people maintain some ability to sense light and are able to modify their sleep/wake cycle.

 The brain stem, at the base of the brain, communicates with the hypothalamus to control the transitions between wake and sleep.  (The brain stem includes structures called the pons, medulla, and midbrain.)  Sleep-promoting cells within the hypothalamus and the brain stem produce a brain chemical called GABA, which acts to reduce the activity of arousal centers in the hypothalamus and the brain stem.  The brain stem (especially the pons and medulla) also plays a special role in REM sleep; it sends signals to relax muscles essential for body posture and limb movements, so that we don’t act out our dreams.

The thalamus acts as a relay for information from the senses to the cerebral cortex (the covering of the brain that interprets and processes information from short- to long-term memory).  During most stages of sleep, the thalamus becomes quiet, letting you tune out the external world.  But during REM sleep, the thalamus is active, sending the cortex images, sounds, and other sensations that fill our dreams. 

The pineal gland, located within the brain’s two hemispheres, receives signals from the SCN and increases production of the hormone melatonin, which helps put you to sleep once the lights go down.  People who have lost their sight and cannot coordinate their natural wake-sleep cycle using natural light can stabilize their sleep patterns by taking small amounts of melatonin at the same time each day.  Scientists believe that peaks and valleys of melatonin over time are important for matching the body’s circadian rhythm to the external cycle of light and darkness.

The basal forebrain, near the front and bottom of the brain, also promotes sleep and wakefulness, while part of the midbrain acts as an arousal system.  Release of adenosine (a chemical by-product of cellular energy consumption) from cells in the basal forebrain and probably other regions supports your sleep drive.  Caffeine counteracts sleepiness by blocking the actions of adenosine.

The amygdala, an almond-shaped structure involved in processing emotions, becomes increasingly active during REM sleep. 

top

Sleep Stages

There are two basic types of sleep:  rapid eye movement (REM) sleep and non-REM sleep (which has three different stages).  Each is linked to specific brain waves and neuronal activity.  You cycle through all stages of non-REM and REM sleep several times during a typical night, with increasingly longer, deeper REM periods occurring toward morning. 

Stage 1 non-REM sleep is the changeover from wakefulness to sleep.  During this short period (lasting several minutes) of relatively light sleep, your heartbeat, breathing, and eye movements slow, and your muscles relax with occasional twitches.  Your brain waves begin to slow from their daytime wakefulness patterns. 

Stage 2 non-REM sleep is a period of light sleep before you enter deeper sleep.  Your heartbeat and breathing slow, and muscles relax even further.  Your body temperature drops and eye movements stop.  Brain wave activity slows but is marked by brief bursts of electrical activity.  You spend more of your repeated sleep cycles in stage 2 sleep than in other sleep stages.

Stage 3 non-REM sleep is the period of deep sleep that you need to feel refreshed in the morning.  It occurs in longer periods during the first half of the night.  Your heartbeat and breathing slow to their lowest levels during sleep.  Your muscles are relaxed and it may be difficult to awaken you.  Brain waves become even slower. 

REM sleep first occurs about 90 minutes after falling asleep.  Your eyes move rapidly from side to side behind closed eyelids.  Mixed frequency brain wave activity becomes closer to that seen in wakefulness.  Your breathing becomes faster and irregular, and your heart rate and blood pressure increase to near waking levels.  Most of your dreaming occurs during REM sleep, although some can also occur in non-REM sleep.  Your arm and leg muscles become temporarily paralyzed, which prevents you from acting out your dreams.  As you age, you sleep less of your time in REM sleep.  Memory consolidation most likely requires both non-REM and REM sleep.

top

Sleep mechanisms

Two internal biological mechanisms–circadian rhythm and homeostasis–work together to regulate when you are awake and sleep.  

Circadian rhythms direct a wide variety of functions from daily fluctuations in wakefulness to body temperature, metabolism, and the release of hormones.  They control your timing of sleep and cause you to be sleepy at night and your tendency to wake in the morning without an alarm.  Your body’s biological clock, which is based on a roughly 24-hour day, controls most circadian rhythms.  Circadian rhythms synchronize with environmental cues (light, temperature) about the actual time of day, but they continue even in the absence of cues. 

Sleep-wake homeostasis keeps track of your need for sleep.  The homeostatic sleep drive reminds the body to sleep after a certain time and regulates sleep intensity.  This sleep drive gets stronger every hour you are awake and causes you to sleep longer and more deeply after a period of sleep deprivation.

Factors that influence your sleep-wake needs include medical conditions, medications, stress, sleep environment, and what you eat and drink.  Perhaps the greatest influence is the exposure to light.  Specialized cells in the retinas of your eyes process light and tell the brain whether it is day or night and can advance or delay our sleep-wake cycle.  Exposure to light can make it difficult to fall asleep and return to sleep when awakened.

Night shift workers often have trouble falling asleep when they go to bed, and also have trouble staying awake at work because their natural circadian rhythm and sleep-wake cycle is disrupted.  In the case of jet lag, circadian rhythms become out of sync with the time of day when people fly to a different time zone, creating a mismatch between their internal clock and the actual clock. 

top

How Much Sleep Do You Need?

Your need for sleep and your sleep patterns change as you age, but this varies significantly across individuals of the same age.  There is no magic “number of sleep hours” that works for everybody of the same age.  Babies initially sleep as much as 16 to 18 hours per day, which may boost growth and development (especially of the brain).  School-age children and teens on average need about 9.5 hours of sleep per night.  Most adults need 7-9 hours of sleep a night, but after age 60, nighttime sleep tends to be shorter, lighter, and interrupted by multiple awakenings.  Elderly people are also more likely to take medications that interfere with sleep. 

In general, people are getting less sleep than they need due to longer work hours and the availability of round-the-clock entertainment and other activities. 

Many people feel they can "catch up" on missed sleep during the weekend but, depending on how sleep-deprived they are, sleeping longer on the weekends may not be adequate. 

top

Dreaming

Everyone dreams.  You spend about 2 hours each night dreaming but may not remember most of your dreams.  Its exact purpose isn’t known, but dreaming may help you process your emotions.  Events from the day often invade your thoughts during sleep, and people suffering from stress or anxiety are more likely to have frightening dreams.  Dreams can be experienced in all stages of sleep but usually are most vivid in REM sleep.  Some people dream in color, while others only recall dreams in black and white.

top

The Role of Genes and Neurotransmitters

Chemical signals to sleep     

Clusters of sleep-promoting neurons in many parts of the brain become more active as we get ready for bed.  Nerve-signaling chemicals called neurotransmitters can “switch off” or dampen the activity of cells that signal arousal or relaxation.  GABA is associated with sleep, muscle relaxation, and sedation.  Norepinephrine and orexin (also called hypocretin) keep some parts of the brain active while we are awake.  Other neurotransmitters that shape sleep and wakefulness include acetylcholine, histamine, adrenaline, cortisol, and serotonin.

Genes and sleep

Genes may play a significant role in how much sleep we need.  Scientists have identified several genes involved with sleep and sleep disorders, including genes that control the excitability of neurons, and "clock" genes such as Per, tim, and Cry that influence our circadian rhythms and the timing of sleep.  Genome-wide association studies have identified sites on various chromosomes that increase our susceptibility to sleep disorders.  Also, different genes have been identified with such sleep disorders as familial advanced sleep-phase disorder, narcolepsy, and restless legs syndrome.  Some of the genes expressed in the cerebral cortex and other brain areas change their level of expression between sleep and wake.  Several genetic models–including the worm, fruit fly, and zebrafish–are helping scientists to identify molecular mechanisms and genetic variants involved in normal sleep and sleep disorders.  Additional research will provide better understand of inherited sleep patterns and risks of circadian and sleep disorders. 

Sleep studies

Your health care provider may recommend a polysomnogram or other test to diagnose a sleep disorder.  A polysomnogram typically involves spending the night at a sleep lab or sleep center.  It records your breathing, oxygen levels, eye and limb movements, heart rate, and brain waves throughout the night.  Your sleep is also video and audio recorded.  The data can help a sleep specialist determine if you are reaching and proceeding properly through the various sleep stages.  Results may be used to develop a treatment plan or determine if further tests are needed. 

top

Tracking Sleep Through Smart Technology

Millions of people are using smartphone apps, bedside monitors, and wearable items (including bracelets, smart watches, and headbands) to informally collect and analyze data about their sleep.  Smart technology can record sounds and movement during sleep, journal hours slept, and monitor heart beat and respiration.  Using a companion app, data from some devices can be synced to a smartphone or tablet, or uploaded to a PC.  Other apps and devices make white noise, produce light that stimulates melatonin production, and use gentle vibrations to help us sleep and wake.

top

Tips for Getting a Good Night's Sleep

Getting enough sleep is good for your health.  Here are a few tips to improve your sleep:

Set a schedule – go to bed and wake up at the same time each day.

Exercise 20 to 30 minutes a day but no later than a few hours before going to bed.

Avoid caffeine and nicotine late in the day and alcoholic drinks before bed.

Relax before bed – try a warm bath, reading, or another relaxing routine.

Create a room for sleep – avoid bright lights and loud sounds, keep the room at a comfortable temperature, and don’t watch TV or have a computer in your bedroom.

Don’t lie in bed awake.  If you can’t get to sleep, do something else, like reading or listening to music, until you feel tired. 

See a doctor if you have a problem sleeping or if you feel unusually tired during the day.  Most sleep disorders can be treated effectively.

top

Hope Through Research

Scientists continue to learn about the function and regulation of sleep.  A key focus of research is to understand the risks involved with being chronically sleep deprived and the relationship between sleep and disease.  People who are chronically sleep deprived are more likely to be overweight, have strokes and cardiovascular disease, infections, and certain types of cancer than those who get enough sleep.  Sleep disturbances are common among people with age-related neurological disorders such as Alzheimer’s disease and Parkinson’s disease.  Many mysteries remain about the association between sleep and these health problems.  Does the lack of sleep lead to certain disorders, or do certain diseases cause a lack of sleep?  These, and many other questions about sleep, represent the frontier of sleep research.

Where Can I Get More Information?

For information on other neurological disorders or research programs funded by the National Institute of Neurological Disorders and Stroke, contact the Institute's Brain Resources and Information Network (BRAIN) at:

BRAIN

P.O. Box 5801

Bethesda, MD 20824

(800) 352-9424.


Comments

Popular posts from this blog

Homeopathy and Cancer Treatment: A Complementary Approach

Hello, I'm Vishnu, a passionate homeopathy practitioner dedicated to exploring the full potential of holistic health. As the field of complementary and alternative medicine continues to evolve, homeopathy has gained attention for its gentle and individualized approach to healing. Today, I want to shed light on how homeopathy can serve as a supportive option for individuals facing cancer, while also emphasizing the importance of informed decision-making. Homeopathy, based on the principle of "like cures like," involves using highly diluted substances to stimulate the body’s natural healing response. For many, this gentle method offers a sense of empowerment and comfort, particularly in challenging health situations such as cancer. Though homeopathy is not promoted as a stand-alone cancer treatment, it can play a valuable role in supporting patients alongside conventional therapies. Individuals undergoing conventional cancer treatments like chemotherapy and radiation often ...

World’s ‘best’ vaccines could soon come to poor countries

Health World’s ‘best’ vaccines could soon come to poor countries -By Vishnu /11/5/21 In the 6 months since Covid vaccines became available, those based on mRNA technology have scored top marks. So far, there are only two – made by Pfizer and Moderna – and both show 95% efficacy. Other types of vaccines are usually 80% or less efficacious. This difference affects not only the protection you get as an individual but also the protection available to the ‘herd’ or society. With a better vaccine a country can reach ‘herd immunity’ faster by vaccinating fewer people. But mRNA vaccines are still confined to the rich world. This is partly because supply is limited and those countries placed their orders first. Another reason is these vaccines get spoilt if they are not stored at extremely cold temperatures. The Pfizer shot initially required storage at -80°C. Poor countries couldn’t afford to buy specialised freezers for it in bulk. A fragile molecule Why do mRNA vaccines need ultra-cold stora...

WORLD ASTHMA DAY 2021

Health WORLD ASTHMA DAY 2021 Uncovering Asthma Misconceptions World Asthma Day (WAD) (May 5, 2021) is organized by the Global Initiative for Asthma, (GINA) ( www.ginasthma.org ), a World Health Organization collaborative organization founded in 1993.  WAD is held each May to raise awareness of Asthma worldwide. WHO recognizes that asthma is of major public health importance. According to WHO, it was estimated that more than 339 million people had Asthma globally (1) and there were 417,918 deaths due to asthma at the global level in 2016. (3, 4) Although asthma cannot be cured, it is possible to manage asthma to reduce and prevent asthma attacks, also called episodes or exacerbations. 1 This year’s World Asthma Day theme is “Uncovering Asthma Misconceptions”. The theme provides a call to action to address common widely held myths and misconceptions concerning asthma that prevent persons with asthma from enjoying optimal benefit from the major advances in the management of this condi...

Nutrition Facts

  What Is Dragon Fruit and Does It Have Health Benefits Dragon fruit is a tropical fruit that has become increasingly popular in recent years. Though people primarily enjoy it for its unique look and taste, evidence suggests it may provide health benefits as well. This article takes a look at dragon fruit, including its nutrition, benefits, and how to eat it. Share on Pintere What Is Dragon Fruit? Dragon fruit grows on the  Hylocereus  cactus, also known as the Honolulu queen, whose flowers only open at night. The plant is native to southern Mexico and Central America. Today, it is grown all over the world. It goes by many names, including pitaya, pitahaya, and strawberry pear. The two most common types have bright red skin with green scales that resemble a dragon — hence the name. The most widely available variety has white pulp with black seeds, though a less common type with red pulp and black seeds exists as well. Another variety — referred to as yellow dragon fruit —...

Fungal diseases

Health Fungal diseases  About fungal diseases . Fungi are everywhere. Sometimes, they are too small to see with the naked eye. Fungi live: Outdoors, for example, in soil and on plants Indoors, on surfaces and in the air On people’s skin and inside the body There are millions of fungal species, but only a few hundred of them can make people sick. Molds, yeasts, and mushrooms are all types of fungi. Fungi can cause many different types of illnesses, including: Asthma or allergies.  Learn more about mold and how it can affect your health. Rashes or infections on the skin and nails Lung infections (pneumonia), with symptoms similar to the flu or tuberculosis Bloodstream infections Meningitis   Most common fungal diseases Fungal nail infections Common infections of the fingernails or toenails. Vaginal candidiasis Caused by the yeast  Candida , also called a “vaginal yeast infection.” Ringworm A common fungal skin infection that often looks like a circular rash. Candida ...

Brain’s waste removal system

Health Brain’s waste removal system may offer path to better outcomes in Alzheimer’s therapy NIH-funded study in mice suggests lymphatic boost could help reduce amyloid buildup. Study of mouse brain shows the meningeal lymphatics system (purple and pink) could help reduce amyloid. Sandro Da Mesquita, Ph.D. Enhancing the brain’s lymphatic system when administering immunotherapies may lead to better clinical outcomes for Alzheimer’s disease patients, according to a new study in mice. Results published April 28 in Nature suggest that treatments such as the immunotherapies BAN2401 or aducanumab might be more effective when the brain’s lymphatic system can better drain the amyloid-beta protein that accumulates in the brains of those living with Alzheimer’s. Major funding for the research was provided by the National Institute on Aging (NIA), part of the National Institutes of Health, and all study data is now freely available to the broader scientific community. “A broad ra...

Health info / news/

Vexplorehealth Health Information News Helpful Tips for Managing Chronic Kidney Disease Chronic kidney disease (CKD) is a serious condition affecting 37 million U.S. adults and is often overlooked until symptoms appear. As we continue to observe  National Kidney Month  this March, learn how adopting a healthy lifestyle can help manage and slow the progression of CKD and its complications. Watch this video for tips to help people with CKD take charge of their kidney health.

Spinal muscular atrophy

 Spinal muscular atrophy Two-Month-Old Baby Battling Rare Disease To Receive World’s Most Expensive Injection Suffering from genetic spinal muscular atrophy, the baby is undergoing gene theray and will require an injection that costs Rs 16 Crores An eight-week-old baby in Britain will receive an injection that costs about Rs. 16 Crores, reports claimed. Suffering from genetic spinal muscular atrophy, Edward will have to be administered one type of gene therapy—Zolgensma to fight the rare disease. Since Britain imports the doses from the US and Europe, the injection costs a whooping a 1.7 million pounds. A disease unique to children, genetic spinal muscular atrophy (SMA), occurs due to lack of the SMN-1 gene. Symptoms of the disease include weakening of chest muscles which eventually leads to a difficulty in breathing. Interestingly, until 2017 there was no cure for the disease. Spinal Muscular Atrophy Download our Spinal Muscular Atrophy Fact Sheet Learn about MDA’s COVID-19 respon...